
Equations A6 and A7 are rearranged to yield Eqs. A8 and A10 in the 
Laplace domain and Eqs. A9 and A l l  in the time domain: 

R ( s )  = QD(s)i - (ml + ~ ~ ) s - ’ R ( s )  - (mlm2)s-2R(s) (Eq. A8) 

R(t) = Qr>(t)i - (ml + mp)JR(t) d t  - m l m ~ l [ l R ( t )  dt]  d t  

(Eq. A91 
(Eq. A10) 

(Eq. A l l )  

Equation A9 is solved on the analog computer to give R(t); Eq. A1 1 is then 
solved to give &(t)  using R(t)  and its integrals as shown by’the circuit 
diagram in Fig. 9. 

A similar approach can be applied to solve for input functions by 
rearranging Eqs. A6 and A7 to give R(s )  and the input function and 
solving these on the analog computer. Therefore, both convolution and 
deconvolution can be performed by this general approach which, when 
modified in this manner, can also be used to deconvolve QD(t)r against 
Q&Ir to obtain Gmj(tIr. 

QR(s)~ = (A, + A~)s-’R(s) + as-‘R(s) 

QR(t)i (AI + AZ)JR(t) + a J [ S R ( t )  dt]  dt  
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Pattern Recognition 11: 
Investigation of Structure-Activity Relationships 

GOVIND K. MENON and ARTHUR CAMMARATA” 

Abstract 0 A simple form of pattern recognition is successfully used to 
classify a set of structurally diverse therapeutic agents. By using only 
organic structural information, the major pharmacological classes present 
were correctly identified and the pharmacologically unrelated compounds 
were separated out. One technique of factor analysis-principal com- 
ponent analysis-is shown to be readily adaptable in preprocessing the 
data. Simple graphical representation of the results enables their direct 
interpretation. 

Keyphrases o Structure-activity relationships-determined using 
pattern recognition methods of analysis, various drugs 0 Pattern rec- 
ognition-analysis methods used to determine therapeutic classes of 
various drugs u Factor analysis techniques-used to determine thera- 
peutic classes of various drugs 

The application of pattern recognition methods in 
solving chemical problems has provided the incentive for 
considerable research within the past few years (1-6). 

Recently, these methods have been applied in the devel- 
opment of new biological agents due to their capacity to 
analyze rapidly large stores of accumulated information 
and to detect substances worthy of further investigation 
(7-10). In other words, the techniques can be directed 
toward establishing structural specificity in biological 
action, providing rationales in selecting substances for 
biological assay, and identifying pharmacophoric patterns 
of molecular substitution (1). 

Several detailed accounts describe the various pattern 
recognition techniques (11-14), but a brief conceptual 
summary follows. Pattern recognition involves the de- 
tection and recognition of regularities or invariant prop- 
erties among accumulated (often large) sets of measure- 
ments, the purpose being to provide a basis for new hy- 
potheses. For example, consider an attempt to derive a 
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structure-activity relationship. If the relationship of 
structure to activity is to be developed from a basis in- 
volving a small number of structurally diverse compounds 
or from a large number of structurally similar compounds, 
then a visual examination is often sufficient. However, if 
a large number of structurally diverse compounds is in- 
volved, visual examination of the data to arrive at  a 
structure-activity relationship is cumbersome if not im- 
possible. Pattern recognition methods then can be em- 
ployed to advantage. 

A few reports in the recent literature describe the ap- 
plication of pattern recognition techniques in the inves- 
tigation of structure-activity relationships (7-10). These 
have been concerned with two specific areas: classification 
of sedatives and tranquilizers (7,9) and prediction of the 
activity of potential anticancer agents (8, 10). Although 
these investigations have been fairly successful, criticism 
(15, 16) has been directed at  some studies (10, 17) that 
employed these methods in deriving structure-activity 
relationships. Misleading relationships have been shown 
to result due to the improper choice of compounds in the 
data set and to inappropriate structural representation. 
The approach taken in this article attempts to overcome 
these problems and, with proper researcher-computer 
interaction, should provide a simple and consistent means 
of deriving structure-activity relationships. 

In a nonvisual approach to establish the structure-ac- 
tivity relationships, representation of molecular structures 
in numerical terms is necessary. Coding of molecular 
structures is thus a key step. Most biological effects may 
be readily measured and coded, and compounds possessing 
similar activity are readily identified. However, coding of 
organic structural groups or features is not as simple. In 
previous reports, augmented atom fragment (8), sub- 
structural fragment (18), and heteropath (9) representa- 
tions were adopted in molecular structural coding. Several 
disadvantages are inherent in such procedures, however, 
especially in the identification of structure-activity rela- 
tionships: ( a )  molecular structural information is lost by 
considering fragments of molecules independently of each 
other, ( b )  several such molecular discriminators may have 
to be specified in the representation of a given compound, 
( c )  redundant codings may have to be included to distin- 
guish between different compounds satisfactorily, and ( d )  
interpretation of results in terms of structural prototypes 
is extremely difficult. 

One method associated with pattern recognition, factor 
analysis, is readily applicable to structure-activity studies 
(19). Weiner and Weiner (19) used the method directly in 
deriving structure-activity relationships and obtained 
readily interpretable results. However, factor analysis is 
also adaptable as the preprocessing step of a pattern rec- 
ognition procedure, and this approach is taken in this 
paper. 

Briefly, the method requires that one view molecular 
structures in a manner consistent with the way medicinal 
chemists have done in proposing candidate compounds. 
To retain molecular bonding information, all molecular 
structures of the data set are superposed upon each other 
in a chemically consistent manner. Major discriminating 
features between the molecules are then identified. These 
molecular discriminators are coded so as to distinguish 
between bioisosteric atoms or groups (20). Following such 

l input  : raw variables I preprocessing: factor a n a l y s i s b  

ou tpu t :  extracted factors - 
Scheme I 

representation, a factor analytical procedure is applied to 
reduce the dimensionality of the data matrix. Only a few 
molecular features need to be specified to classify correctly 
the compounds of the data set into the pharmacologically 
distinct categories present. 

BASIS OF APPROACH 

The basic operations of pattern recognition as applied in this work may 
be represented as shown in Scheme I. Coding of molecular structures 
comprising the data set leads to their numerical representation in terms 
of a discrete number of variables (the input). The input data are then 
operated on, or preprocessed, to reduce the number of variables required 
to represent the data, i.e., to reduce the dimensionality. The prepro- 
cessing method adopted in this work is principal component analysis, 
which is but one of the several factor analytical methods available 
(2  1-25). 

Classification of the output from the preprocessing step is performed 
next. This step may be done by mathematical techniques such as cluster 
analysis (26,27) and discriminant analysis (28) or with the aid of “learning 
machines” (13, 29-31). In this paper, however, classification is done 
graphically to provide a clearer conceptual understanding and to point 
out the parallelism that exists between the classical and pattern recog- 
nition approaches for deriving structure-activity relationships. Several 
detailed accounts in the literature describe the theory and application 
of various factor analysis techniques (22-25), and only a brief discussion 
is presented in this article. 

A set of M molecules comprising a given data set is coded so as to be 
represented by N molecular groups or features, giving rise to an M X N 
data matrix. This matrix is then used to construct an N X N correlation 
matrix. This correlation matrix is next operated on by a factor analytical 
procedure to extract factors, i.e., to reduce the dimensionality. The two 
most commonly used methods are principal component analysis and 
common factor analysis. In principal component analysis (22,231, one 
seeks to transform the variables of the data set into a linearly independent 
set of component variables consisting of the original variables. When N 
molecular features are chosen as independent variables, then N linear 
combinations are needed to account for all of the variance in the data. 
However, in some cases, fewer linear combinations (in comparison with 
the number of variables in the data matrix) suffice to account for a large 
proportion of the variance within the data. These may then be used to 
represent the data and, since these linear combinations are defined to 
be orthogonal to one another, a reduction in dimensionality is 
achieved. 

In common factor analysis, however, the assumption is made that the 
variables in a data matrix may be influenced to varying degrees by 
properties common to all variables (common variance) and by properties 
unique to only a few variables (unique variance). In other words, every 
variable selected to represent a specific molecular feature is regarded as 
reflecting a common set of physical attributes for the majority of com- 
pounds in the data set and a unique set of physical attributes for others. 
Identification is sought of those variables that reflect common physical 
attributes for the majority of compounds in the data set; all other com- 
pounds are treated as unique. The method thus holds the promise of 
providing some insight regarding the mechanisms leading to major and 
minor pharmacological actions of drugs. Although some advances have 
been made in the application of common factor analysis to physiological 
studies such as olfaction (32), principal component analysis is more 
readily adaptable in the investigation of structure-activity relationships 
and is the method used here. 

THEORY 

The basis for a principal component analysis may be placed in per- 
spective by considering an attempt to transform a multiple regression 
into a simple linear one. In a multiple regression model, one seeks to relate 
the biological activities, A ,  for M compounds to N variables, X, in the 
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Table I-Pharmacological Classification and Therapeutic Use of Compounds Studied 
- 

Compound 

I 
I1 

111 
IV 
V 

VI 

VII 
VIII 

IX 
X 

XI 
XI1 

XI11 
XIV xv 
XVI 

XVII 

XVIII 
XIX xx 
XXI 

XXII 
XXIII 
XXIV xxv 
XXVI 

XXVII 

XXVIII 
XXIX 

xxx 
XXXI 

XXXII 
XXXIII 
XXXIV xxxv 
XXXVI 

XXXVII 
XXXVIII 

XXXIX 

Drug 
Pharmacological 

Classification Therapeutic Use 

Levarterenol 
Methoxamine 
Metaraminol 
Ethylnorepinephrine 
Pheny lpropanolamine 

Amphetamine 

Chlorphen termine 
Phentermine 
Hy droxyamphetamine 
Methyldopa 
Levodopa 
Epinephrine 

Me thoxyphenamine 
Phenylephrine 
Ephedrine 

Methamphetamine 

Mephentermine 

Propylhexedrine 
Phenmetrazine 
Phendimetrazine 
Isopro terenol 
Isoxsuprine 
Nylidrin 
Propranolol 
Benzphetamine 
Diethylpropion 
Phenoxybenzamine 

Acetylcholine 
Succinylcholine 

Methacholine 
Carbachol 
Bethanechol 
Pilocarpine 
Ambenonium 
Edrophonium 
Phy sostigmine 
Neostigmine 
Demecarium 
Pyridostigmine 

a- Agonist 
a- Agonist 
a-Agonist 
0-Agonist 
a-Agonist, CNS 

stimulant 
CNS stimulant 

CNS stimulant 
CNS stimulant 
a- Agonist 
CNS agent 
CNS agent 
a,P-Agonist 

0- Agonis t 
a-Agonist 
a-Agonist, CNS 

stimulant 
CNS stimulant 

CNS stimulant, 

a-Agonist 
CNS stimulant 
CNS stimulant 
&Ago nist 
0-Agonist 
0-Agonist 
0-Antagonist 
CNS stimulant 
CNS stimulant 
&Antagonist 

Parasympathomimetic 
Myoneural blocker, 

Parasympathomimetic 
Parasympathomimetic 
Parasympathomimetic 
Parasympathomimetic 
Anticholinesterase 
Anticholinesterase 
Anticholinesterase 
Anticholinesterase 
Anticholinesterase 
Anticholinesterase 

a-agonist 

parasympathomimetic 

Antihy otensive, vasoconstrictor 
Antiarrtythmic, antihypotensive 
Antihypotensive 
Bronchodilator 
Nasal decongestant, anorexiant 

Antidepressant, minimal brain 

Anorexiant 
Anorexiant 
Antihypotensive 
Aptihy pertensive 
Antiparkinsonian 
Antihypotensive, bronchodilator, de- 

congestant, antiarrhythmic 
Bronchodilator 
Decongestant, antihypotensive 
Antihypotensive, decongestant, broncho- 

Anorexiant, minimal brain dysfunction, 

Antihypotensive 

Nasal decongestant 
Anorexiant 
Anorexiant 
Antiarrhythmic, bronchodilator 
Peripheral vascular disease 
Peripheral vascular disease 
Antiarrhythmic, antihypertensive 
Anorexian t 
Anorexiant 
Peripheral vascular disease, antihyper- 

tensive 
Miotic 
Muscle relaxant 

Glaucoma 
Glaucoma, miotic 
Intestinal relaxant 
Glaucoma 
Myasthenia gravis 
Myasthenia gravis 
Glaucoma, myasthenia gravis 
Myasthenia gravis 
Glaucoma 
Myasthenia gravis 

dysfunction, anorexiant, narcolepsy 

dilator, antiarrhythmic 

antidepressant, narcolepsy 

form of a linear combination: 

Ai = blX1,  t bZX2, + bsX3; t . . . t bNXNi t i = 1,2,. . . , M  
(Eq. 1) 

However, in evaluating the least-squares estimates of the b coefficients, 
the values of the coefficients are necessarily a function of the covariance 
between the independent variables, X ,  as well as of the covariance be- 
tween the biological activities and the independent variables. One may 
thus seek to account for the covariance between X prior to attempting 
a regression analysis. 

In making this attempt, a transformed variable, T ,  may be defined as 
a linear combination of the independent variables, X :  

Ti = mlX1,  + m z X z i  t m3X:ji + . . . t mNXN,  i = 1 , 2 , .  . . , M 
(Eq. 2) 

This equation is fundamental to all factor analysis procedures (principal 
component analysis in this case). In the simple case where only three 
independent variables are involved, Eq. 2 is written as: 

(Eq. 3) Ti = m l X l i  + mzXzi  + msXai i = 1.2,. . . , M 

Squaring both sides of Eq. 3 yields: 

Ti2 = ( m l X 1 ,  + m2Xzi + m3X:%i)2 (Eq. 4) 

where xi indicates that the summation is over all compounds (1 to M )  
unless otherwise specified. For convenience of mathematical manipuia- 
tion, u is defined by the expression: 

I 1 

(I= x T i 2  0%. 5 )  
1 

so that: 

The coefficients m 1, mz, and m:? may be defined to be orthogonal; i.e., they 
are subject to the conditional equation: 

o = rn12 + mi' + m:<2 - 1 = 0 0%. 7) 
(u  is introduced for mathematical convenience). Minimization of the 
coefficients of Eq. 6 under the restraint imposed by Eq. 7 can be accom- 
plished with the aid of Lagrangian multipliers (33). Differentiation with 
respect to each coefficient thus leads to: 

Evaluation of Eqs. 8a-8c provides the set of relationships that may be 
written in matrix formalism as: 

In Eq. 9, the matrix involving the independent variables is a covariance 
matrix. However, a technical problem arises in such cases as a conse- 
quence of the relative magnitudes of the values used to represent the 
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s t ep  1 

first superposit ion 

factor analytical step 1 

cluster 1 cluster 2 ou  

step 2 

second superposit ion 

1 

1 
step 2 

I 
second superposit ion 

1 
factor analytical factor analytical 

clusters outliers clusters outliers 

1 1 1 1 
I 

assign biological activities and examine distribution of  activity types 

Scheme I1 

independent variables. Variables that are numerically greater in a data 
matrix will lead to covariances of a numerically large magnitude; there- 
fore, these variables will be designated, artificially, as the more important 
contributors in a given linear combination. The potential for an artifact 
of this type in Fujita-Iwasa-Hansch (34) analyses has been pointed out 
(35). Autoscaling of variables is a means of avoiding this problem (13). 
Autoscaling involves the use of correlation coefficients in the place of 
covariances when establishing normal equations such as is represented 
by Eq. 9. The elements of a correlation matrix are defined by the rela- 
tionship: 

I rrs = (Eq. 10) V~C (Xri - x r ) ’  c (Xsi - x.<)2 , 1 

where r and s designate the variables whose intercorrelation is being 
evaluated. Equation 9 may thus be rewritten as: 

rl l  - A r12 rl:? 

rzl r 2 2 -  A rz3 I I !i I = O  (Eq. 1 1 )  

The /3 coefficients of Eq. 11 are related to the m coefficients of Eq. 9 by 
the expression: 

I r:jl r3z rru - A 

mk = /3,A‘/2 (Eq. 12) 

By using correlation coefficients, any one of the elements of the corre- 
lation matrix can vary only between fl and 0, so no element of the matrix 
is overweighted. 

The solutions for Eq. 11 can be obtained by first determining the ei- 
genvalues, A,, which characterize the correlation matrix. As many ei- 
genvalues will be obtained as there are variables in the data matrix. For 
each eigenvalue, an associated set of eigenvectors, Ti, is obtained. 

A relative measure of the information content of the linear combina- 
tions Ti is provided by the magnitudes of the associated eigenvalues. The 
total variance explained by one or more of the eigenvalues is given by the 
expression: 

xi 
fraction “explained” variance = !Z!.- (Eq. 13) N 

iers 

where 15 is the number of eigenvalues selected, and N is the number of 
variables in the data matrix. It is apparent that  all of the eigenvalues 
taken together represent the data exactly; i.e., the fraction of explained 
variance is 1. However, in some cases it may be sufficient to choose only 
a few high value eigenvectors so that only a predetermined fraction of 
the variance in the data is explained. Thus, one may choose those high 
value eigenvectors that  explain greater than 0.95 of the data, as is often 
the case in physicochemical applications, or one may choose to work with 
an approximated form of the data matrix, selecting only those eigen- 
vectors whose associated eigenvalues are equal to 1 or greater (23). The 
latter approach is taken in this paper, because fewer numbers of eigen- 
vectors are required to represent the data graphically and because such 
an approximation is quite adequate for the present purposes. 

Principal component analysis presents a means by which optimization 
procedures involving.regression methods such as Fujita-Iwasa-Hansch 
analyses (34) can be made less prone to error due to intercorrelation be- 
tween variables. Correlation analysis utilizing principal component 
analysis as a preprocessing method would thus be based on the multiple 
regression model in the form: 

K 
A i =  t = 1  E C C I T r , + p  i = 1 , 2  , . . . ,  M (Eq. 14) 

where the K orthogonal variables, T ,  explain the major proportion of the 
variance in the data. An interface thus exists between pattern recognition 
techniques and the more widely used quantitative structure-activity 
methods. 

METHOD 

The 39 drugs comprising the data set are listed in Table I along with 
their known pharmacological classifications (36) and therapeutic uses 
(37). They consist of various pharmacological types, including a- and 
8-adrenergic agents, cholinergic agents, and central nervous system 
(CNS) stimulants. The study was directed toward separating these 
compounds into the distinct pharmacological groups they are known to 
fall into and to separate out the unrelated compounds. 

Scheme I1 is an example of a two-step pattern recognition procedure 
as followed in this work. In the first step, a preliminary factor analysis 
is performed to separate broadly the entire data set. Classification is then 
accomplished by plotting the output from the preprocessing step. Clusters 
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Figure 1-Three-dimensional plot of factor coordinates from factor analytical step 1. A = a-adrenergic or CNS agent, B = 0-adrenergic agent, C 
= anticholinesterase, L = adrenergic blocker, and P = parasympathomimetic. (Arabic numbers correspond to the roman numerals for the compounds 
used in the text.) 

so obtained are then factor analyzed separately to yield smaller clusters. 
Such a sequential procedure has two distinct advantages: (a) only a few 
discriminating features need to be specified in each step, and (b )  since 
only a few discriminators are included in the data matrix, easily inter- 
pretable results are obtained, the solutions being in two or three di- 
mensions. 

Step 1-Superpositioning of Structures-Since only variant molec- 
ular features are included in the basic equation (Eq. 2). all of the com- 
pounds of the data set must first be superimposed to generate the sim- 
plest possible superposed structure or “superstructure.” This composite 
structure is so designed that all molecules of the data set can be super- 
posed on it in a consistent manner. This is a key step of the procedure 
adopted here, since the complexity of the final results depends on the 
complexity of the superposed structure chosen. This structure has no 
molecular significance; it is only a geometrical construction. I t  may be 
described as a hypothetical parent structure for all compounds of the data 
set. 

In the present case, examination of the structures of I-XXXIX shows 
a wide variation of structural types. The task of superimposition of all 
these structures is considerably simplified if representative structures 
are selected from among structurally related compounds. In the given 
data set, one might pick XXI, XXIV, XXVII, XXXIII, and XXXVI as 
being representatives. All of these structures have the common feature 
X-(C),-N, where X may be a carboxylic acid derivative or aromatic 
ring, n is the number of carbon atoms intervening, and the amine nitrogen 
N may be variously substituted. The superposition of the molecules is 
achieved by superposing the X groups and the N groups while, at  the same 

time, carefully accounting for the length of the carbon chain between 
them (XL). 

In the case of phenethylamines like isoproterenol (XXI) and am- 
phetamine (VI), the aromatic ring is superposed on ring X (see Structure 
XL), the carbon atom joined to the ethylamine group being placed on 
position 2. The two-carbon chain is superposed on 4 and 11; the isopro- 
pylamino group is on N, 5, and 6; and all other positions (7,8,9,10,12, 
13) are nonexistent. For a molecule like acetylcholine, the carbonyl group 
is superposable on 2 and 3, the esteratic methyl group on 1, the ether 
oxygen on 4, the two-carbon chain on 9 and 11, and the trimethylam- 
monium function on N, 5,6, and 7. Positions 8,10,12, and 13 are absent 

XL 
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Table 11-Molecule-Feature Matrix 

Posi tiona 

Compound 1 2 3 4 5 6 7 8 9 10 11 1 2  13 

I 
I1 

I11 
IV 
V 

VI 
VII 

VIII 
IX 
X 

XI 
XI1 

XI11 
XIV xv 
XVI 

XVII 
XVIII 

XIX xx 
XXI 

XXII 

XXIII 

xxn7 
xxv 

XXVI 

XXVII 

XXVIII 
XXIX xxx 
XXXI 

XXXII 
XXXIII 
XXXIV 

xxxv 
XXXVI 

XXXVII 
XXXVIII 

XXXIX 

dFt 

‘CH,CH,C,H, 

CH 2~:0c6H5 

aCr = aromatic carbon atom, Ca = aliphatic carbon atom, and C, = carbonyl carbon atom. 

in this case. For compounds like neostigmine or physostigmine, the ester 
or amide group is treated just as for acetylcholine; the aromatic ring is 
superposed on the six-membered ring formed by positions 8,9,11, 13, 
10, and 12. If the esteratic group is para to the amine function, then the 
former is linked to the aromatic ring by the 4-12 bond; if the esteratic 
group is meta to the aromatic ring, it is linked to the latter by the 4-10 
bond. 

Two of the molecules of the data set, pilocarpine (XXXIII) and pyri- 
dostigmine (XXXIX), are structurally distinct from the rest; they may 
be superposed on Structure XL as follows. The ester group of pilocarpine 
is treated just as for acetylcholine; the four-carbon chain between the 
ester group and the amine function is superposable on positions 12,8,9, 
and 11. The superpositioning of the nitrogen-containing rings is apparent 
from the figure. In the case of pyridostigimine, the pyridine ring is su- 
perposed on N, 11,9,12, and 10. Position 4 (ether oxygen) is linked to 12 
to represent the meta-substitution. 

All other structures are similarly superposable; Table I1 shows exactly 
how each compound was treated. 

Selection of Discriminators-Discriminators are groups, bonds, or 
other functionalities that serve to distinguish between compounds of a 
data set. When a wide variety of structural types are being studied, the 
number of variables in the data matrix will be inordinately large if all 
structural differences are designated as discriminators. Therefore, i t  is 
desirable to specify the minimum number of discriminators required to 
differentiate between the compounds of the data set. 

In the present study, more than one factor analytical step is to be ap- 
plied (Scheme 11). In the first step, only a broad classification is sought, 
so only major structural differences need be specified while selecting 
discriminators. Thus, fine distinctions such as aromatic or aliphatic 
substitution patterns may be ignored while major distinctions such as 
those between aromatic and aliphatic groups should be specified. On this 
basis, positions 1-13 of XL may be chosen as discriminators. However, 
closer examination of Structures I-XXXIX and of Table I1 shows that 
positions 11-13 are not major discriminators; they represent only two 
variations in structure (aromatic or aliphatic carbon atoms). Furthermore, 
these positions are equally well represented by others, eg. ,  12 and 13 by 
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Table 111-Descriptor Code for Designating 
Discriminator Groups 

Atomic /Struc tural 
Groupa Constant Code 

5.84 
3.37 
2.59 
1.03 
5.65 

10.30 
4.65 

14.98 
13.95b 

16.81b 
3.62 
4.44 
9.06b 

13.68b 
8.01 b 
0.79b 
3 .81b  
1.76 
3.62 
1.82b 

15.14b 
2.55 
3.55 
7.41 

1 .oo 
0.58 
0.44 
0.18 
0.97 
1.76 
0.80 
2.57 
2.39 

2.88 
0.62 
0.76 
1.55 
2.34 
1.37 
0.13 
0.65 
0.30 
0.62 
0.31 
2.59 
0.44 
0.60 
1.26 

coori 7.23 1.24 

4C, = aromatic carbon, Co = carbonyl carbon, and Ca = aliphatic car- 
bon. b Value was calculated. COnly the aromatic carbon attached to the 
methylene group and the two ortho-carbon atoms were included to be 
consistent in designating discriminators: the value of 16.81 was calcu- 
lated using the molar refraction value for the benzene ring (38). dAli- 
phatic hydroxyl group. ePhenolic hydroxyl group. 

Table I V - C o d e d  Molecule-Feature Data Matrix 

Compound 

I 
I1 

I11 
IV 
V 

VI 
VII 

VIII 
IX 
X 

XI 
XI1 

XI11 
XIV xv 
XVI 

XVII 
XVIII 

XIX xx 
XXI 

XXII 
XXIII 
XXIV 
xxv 

XXVI 
XXVII 

XXVIII 
XXIX xxx 
XXXI 

XXXII 
XXXIII 
XXXIV xxxv 
XXXVI 

XXXVII 
XXXVIII 

XXXIX 

1 2 3 

8 for all compounds [except for pilocarpine (XXXIII) and pyridostigmine 
(XXXIX), which are in any case different from the other compounds of 
the data set]. Similarly, position 11 is represented by position 4 in I- 
XXVII and by position 9 in XXVIII-XXXIX. Positions 11-13 may 
therefore be ignored. 

Designation of Discriminators: Coding-The discriminators selected 
are designated in numerical terms by a descriptor code. One has to choose 
a property of the groups that can adequately represent and distinguish 
between them. It is seen that many of the substituents involved are 
bioiaosteric, e.g., COOCH3, CONH2, and CON(CH32. Since it is generally 
true that classical ismteric groups have similar molar refractivities, molar 
refraction values were used in the coding (38). The molar refraction value 
of chlorine (5.84) was selected as standard, and all other codes were de- 
termined relatively. The molar refraction values used and the descriptor 
codes adopted are given in Table 111. Several molar refraction values were 
calculated by using the additive-constitutive property. 

With the codes given in Table 111, the molecule-discriminator data 
matrix shown in Table IV was constructed. Comparison of Structures 
I-XXXIX with XL and of Tables 11-IV will indicate exactly how each 
compound of the data set was numerically designated. 

Preprocessing: Factor Analytical Step I-By using the coded mole- 
cule-discriminator data matrix of Table IV, the correlation matrix shown 
in Table V was constructed (as described under Theory). The solution 
of Eq. 13 gave three eigenvalues whose values were greater than unity. 
These values, together with the associated eigenvectors, are given in Table 
VI. The three eigenvalues chosen explain (4.87 + 1.61 + 1.32)/10 = 0.78 
of the variance. This value is not very high, but only major classification 
patterns are sought in this part of the analysis. That an explained variance 
of 78% is sufficient for the present purposes is obvious upon examination 
of the clustering pattern obtained (Fig. I). 

Classification: Plotting-By using the eigenvectors associated with 
the three eigenvalues, three factor coordinates, t I ,  t 2 ,  and t3, were cal- 
culated for each compound of the data set, The points were then plotted 
by simple solid geometrical construction (Fig. 1). After plotting each 
point, its associated biological activity was used to label it in the distri- 

Position 

4 5 6 7 

0.58 
0.58 
0.58 
0.58 
0.58 
0.58 
0.58 
0.58 
0.58 
0.58 
0.58 
0.58 
0.58 
0.58 
0.58 
0.58 
0.58 
0.44 
0.58 
0.58 
0.58 
0.58 
0.58 
0.58 
0.58 
0.58 
0.58 
0.97 
0.80 
0.97 
0.76 
0.76 
0.62 
1.37 
0.00 
1.55 
2.34 
2.34 
2.34 

0.58 
0.58 
0.58 
0.58 
0.58 
0.58 
0.58 
0.58 
0.58 
0.58 
0.58 
0.58 
0.58 
0.58 
0.58 
0.58 
0.58 
0.44 
0.58 
0.58 
0.58 
0.58 
0.58 
0.58 
0.58 
0.58 
0.58 
0.13 
0.13 
0.13 
0.13 
0.13 
0.13 
0.13 
0.18 
0.13 
0.13 
0.13 
0.13 

0.58 
0.58 
0.58 
0.58 
0.58 
0.58 
0.58 
0.58 
0.58 
0.58 
0.58 
0.58 
0.58 
0.58 
0.58 
0.58 
0.58 
0.44 
0.58 
0.58 
0.58 
0.58 
0.58 
0.58 
0.58 
0.58 
0.58 
0.65 
0.65 
0.65 
0.65 
0.65 
0.65 
0.65 
0.00 
0.65 
0.65 
0.65 
0.65 

0.44 
0.44 
0.44 
0.44 
0.44 
0.44 
0.44 
0.44 
0.44 
0.44 
0.44 
0.44 
0.44 
0.44 
0.44 
0.44 
0.44 
0.44 
0.44 
0.44 
0.44 
0.44 
0.44 
0.30 
0.44 
0.44 
0.30 
0.30 
0.30 
0.30 
0.30 
0.30 
0.30 
0.62 
0.30 
0.30 
0.30 
0.30 
0.30 

0.18 0.18 
0.18 0.18 
0.18 0.18 
0.18 0.18 
0.18 0.18 
0.18 0.1 8 
0.18 0.18 
0.18 0.18 
0.18 0.18 
0.18 0.18 
0.18 0.18 
0.18 0.97 ... . 

0.18 0.97 
0.18 0.97 
0.18 0.97 
0.18 0.97 
0.18 0.97 
0.18 0.97 
0.80 0.18 
0.80 0.97 
0.18 2.57 . 
0.18 2.39 
0.18 2.39 
0.18 2.57 
0.97 2.88 
1.76 1.76 
2.59 2.88 
0.97 0.97 
0.97 0.97 . ~. . .. 

0.97 0.97 
0.97 0.97 
0.97 0.97 
0.31 0.97 
0.80 1.76 
0.97 1.76 
0.62 0.97 
0.97 0.97 
0.97 0.97 
0.00 0.00 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0 .oo 
0.00. 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0 .oo 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.97 
0.97 
0.97 
0.97 
0.97 
0 .oo 
1.76 
1.76 
0.00 
0.97 
0.97 
0.97 

8 

0.00 
0.00 
0.00 
0 .oo 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0 .oo 
0.44 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.44 
0.58 
0.58 
0.58 
0.58 
0.58 
0.58 

__ 
9 10 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0 .oo 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.44 
0.00 
0.00 
0.44 
0.44 
0.44 
0.44 
0.44 
0.44 
0.44 
0.58 
0.58 
0.58 
0.58 
0.58 
0.58 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0 .oo 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.58 
0.58 
0.58 
0.58 
0.58 
0.58 
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Figure 2-Three-dimensional plot of factor coordinates from factor analytical step 2. A = a-adrenergic agonist, B = /3-adrenergic agonist, C = 
CNS stimulant, H = antihypertensive, M = mixed-acting agent (a-adrenergic agonist and CNS stimulant), and P = antiparkinsonian. (Arabic 
numbers correspond to the roman numerals for the compounds used in the text.) 

bution (B for 0-adrenergic agent, P for parasympathomimetic, C for 
anticholinesterase, A for a-adrenergic or CNS agent, and L for adrenergic 
blocker). Examination of Fig. 1 shows distinct patterns in the distribution. 
Adrenergics and cholinergics are well separated, and the @-agonists form 
a well-resolved cluster. The parasympathomimetics form a distinct 
cluster compared to the scattered distribution of the anticholinesterases. 
Phenoxybenzamine (XXVII), the only a-blocker, is far removed from 
the rest of the data set; propranolol (XXIV), the only @-blocker, is re- 
moved from, but close to, the p-agonists. 

Pilocarpine (XXXIII) appears to occupy an ambiguous position; 
however, this compound is structurally and pharmacologically quite 

Table V-Correlation Matrix for Factor Analytical Step 1 

different from the rest so it can be regarded as well resolved. Only two 
compounds, ethylnorepinephrine (IV) and methoxyphenamine (XIII), 
are not properly classified. They are found within the cluster of a-ad- 
renergic and CNS agents (these agents are primarily p-adrenergic ago- 
nists). However, they are well resolved after the second factor analytical 
step, when fine substitution patterns are considered. 

Step 2-The distribution pattern of Fig. 1 indicates that, although the 
major pharmacological classes have been correctly identified and well 
separated, further separation is desirable among the adrenergic and CNS 
agents. The group of 20 compounds clustering around the 2'3 axis (I-XX, 
Fig. 1) is fairly large and is subjected to another analysis. The list of 

~ 

Position 
Posi- 
t ion 1 2 3 4 5 6 7 8 9 10 

1 1.000 -0.605 0.460 -0.352 0.130 -0.115 0.445 0.616 0.611 0.705 
2 1.000 -0.107 0.626 -0.329 0.002 -0.822 -0.564 -0.891 -0.560 
3 1.000 -0.007 -0.008 -0.143 -0.178 -0.177 0.034 -0.229 
4 1.000 -0.394 -0.103 -0.358 -0.607 -0.763 -0.502 

6 1.000 0.079 0.063 0.191 -0.037 
5 1.000 0.445 0.359 0.067 0.472 0.134 

7 1.000 0.382 0.754 0.477 
8 1.000 0.722 0.886 
9 1.000 0.649 

10 1.000 
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Table VI-Eigenvalues and Associated Eigenvectors for Step 1 

Eigenvalue Eigenvalue Eigenvalue 
I = 4.87 I1 = 1 .61  111 = 1 . 3 2  

P1 - 0 . 3 3 a  0 .39  0 .22  
P Z  0 .40  4 . 0 3  -0.14 

0.00 0 .38  0.74 
0.34 

-0.19 
- 0 . 0 5  

0.10 -0.04 
- 0 . 5 1  0.35 
- 0 . 6 0  0 .12  

8.. - 0 . 3 4  -0.13 0.00 
, I  

Ps -0.37 
0 9  4 . 4 3  
D * a  -0.37 

0.13 
-0 .09  

0.16 

-0.34 
0.09 

-0.35 

@Values are the associated eigenvector coefficients. 

compounds is given in Table VII, which also includes the molecule-feature 
matrix. The distinction in this case (compared to Step 1, Table 111) is that 
fine substitution patterns are taken into account. 

By following the same operational procedures outlined earlier, a 
composite superstructure for all of the molecules of the data set was 
generated (XLI). Structure XLI is considerably simplified from Structure 
XL, since only a limited data set is involved and preliminary separation 
has already been effected. 

Q 

XLI 
By using the molecule-feature data matrix shown in Table VII, the 

coded molecule-discriminator matrix was constructed as explained ear- 
lier, using the coding given in Table 111. Upon factor analyzing the data 
matrix, three eigenvalues with magnitudes greater than one were ob- 
tained; these values, together with their associated eigenvectors, are given 
in Table VIII. The three eigenvalues together explain 75% of the vari- 
ance. 

The factor coordinates of each compound were obtained as described 
earlier, and the three-dimensional plot is shown in Fig. 2. The adrenergic 
agents are well separated from the CNS agents. The two p-adrenergic 
agents present, ethylnorepinephrine (IV) and methoxyphenamine (XIII), 
are well resolved. The mixed acting agents, ephedrine (XV) and phen- 

Table VII-Molecule-Feature Matrix for Factor Analytical 
Step 2 

Position 
Com- 

pound 1 2 3 4 5 6 

I 
I1 

111 
IV 

V 
VI 

VII  
VIII 
IX 
X 

XI 
XI1 

XI11 
XIV 
xv 

XVI 
XVII 

XVIII 
XIX 
xx 

OH, 
H 
H 
H 
H 
H 
H 

OH, 
H 

H 
OCH, 
H 
H 

H 
H 
H 
H 
H 
H 
H 
H 
OCH, 
H 
H 
H 
H 
H 
H 
H 

OH1 
H 
H 
H 
H 
H 
H 

H 
OH,, 

OH1 
OH1 
H 
H 
H 
0 
0 

H 
H 
H 
H 

H 
H 
CH3 
CH, 
H 
COOH 
COOH 
H 
H 
H 
H 
H 
CH, 
H 
H 
H 

@Phenolic hydroxyl. b Aliphatic hydroxyl 

Table VIII-Eigenvalues and Associated Eigenvectors for 
Step 2 

Eigenvalue Ei envalue Ei envalue 
I = 1.96 If= 1.54 I d =  1.10 

P I  0.43“ 0 .52  -0.30 

B. 0.37 -0.06 -0.76 
P I  -0.29 0.55 0.00 
. a  
P, 0.57 
Ps -0.51 
Pr  -0.06 

0.18 0.38 
0.35 -0.32 

-0.51 -0.30 

a Values are the associated eigenvector coefficients. 

ylpropanolamine (V), occupy a position between the a-adrenergic and 
CNS stimulant agents. This is also characteristic of their pharmacological 
action, because they have both types of activity. Methyldopa (X) and 
levodopa (XI) occupy distinct positions, reflecting their characteristically 
different pharmacological activities. 

CONCLUSIONS 

When dealing with a large number of structurally diverse compounds, 
a likely problem with the method adopted here is incorrect structural 
superposition. Attempts to overcome this difficulty are underway. 

To researchers accustomed to setting a cutoff level of 0.95 or greater 
for experimental accuracy, the approximation of 0.75 may not be satis- 
fying. However, a highly accurate reproduction of the data is not essential 
here; only an approximation of the data is sought so that the major dis- 
tinctions between the elements of the data set can readily be identified. 
Furthermore, graphical representation of the results, which is possible 
by such an approach, is directly interpretable and is conceptually simpler 
than the mathematical methods available. 

T o  summarize, a simple factor analytical approach was successfully 
applied to classify a set of 39 therapeutic agents using organic structural 
information. The major pharmacological groups present were correctly 
identified and separated. Pharmacologically unrelated compounds such 
as levodopa (an antiparkinsonian) and methyldopa (an antihypertensive) 
were separated out. Inspection of the clusters indicated some degree of 
order; for example, ephedrine and phenylpropanolamine occupied the 
border region between a-adrenergic agents and CNS stimulant agents. 
The results show that factor analysis can be employed advantageously 
as the preprocessing step of a pattern recognition scheme in the investi- 
gation of structure-activity relationships. 
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pharmacokinetics of ,&Methyldigoxin in Healthy Humans 11: 
Oral Studies and Bioavailability 

PETER H. HINDERLING *) EDWARD R. GARRETT xy and RONALD C. WESTER * 

Abstract 0 The pharmacokinetics of orally administered aqueous 
:%H-P-methyldigoxin solutions were studied at  two dose levels, 0.3 and 
0.6 mg, in healthy human subjects. The drug and its metabolites were 
specifically assayed in biological fluids and compared with results after 
intravenous doses to the same subjects. No significant dose dependency 
was observed. The apparent half-life of absorption was 16 f 6 min (SEM). 
Digoxin was the only metabolite observed in the plasma and comprised 
28.6 f 3.7% of the dose in the urine. 3HH-P-Methyldigoxin, renally excreted 
unchanged, comprised 25.7 f 1.7% (SEM) .  Water-soluble metabolites 
in the urine comprised 9.0 f 1.8%. Fecal and urinary excretion accounted 
for 85% of the dose a t  144 hr. The oral absorption of unchanged :’H-P- 
methyldigoxin from solution was 59 f 6% by area under the curve 
methods and 60 f 4% by renal excretion. A total of 73% of the dose in the 
solution was absorbed as P-methyldigoxin and digoxin. First-pass me- 
tabolism prior to absorption was largely prehepatic and assignable to GI 
degradation; 21.9 f 2.8% was degraded with 12.8 f 4.0% to digoxin and 
9.1 f 4.0% to water-soluble metabolites. From 14 to 18% of the adminis- 
tered oral dose did not reach the systemic circulation. Analog computer 
fitting of plasma and urine levels of drug and digoxin was consistent with 
the first-pass premise with a delayed absorption of GI-generated digoxin 
and other metabolites. There were no significant differences between the 

oral absorption of a tablet formulation and the solution. Orally admin- 
istered P-methyIdigoxin solution delivered 97% cardioactivity as itself 
and digoxin with respect to an equivalent amount of intravenously ad- 
ministered digoxin. This value contrasts to the 140% delivered by intra- 
venously administered P-methyldigoxin on the premise of pharmaco- 
dynamic equivalence of systemically appearing digoxin and @-methyl- 
digoxin. Literature reports on the oral bioavailability of solutions and 
solid dosage forms of digoxin were critically reviewed, but ho reliable 
comparison of the extent and reproducibility of oral absorption of car- 
dioactive agents from administered digoxin or P-methyldigoxin could 
be made from the widely variable digoxin studies with nonspecific as- 
says. 
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Semisynthetic derivatives of digoxin (la) such as p- 
methyldigoxin (Ib), a methyl ether of digoxin, and p- 
acetyldigoxin (Ic), an acetyl ester of digoxin, have been 
claimed to have higher intrinsic rate constants and ef- 
ficiencies of absorption than digoxin in animals and in 
humans (1-14). Presumably, the rationale for their pre- 
ferred usage is that a completely absorbed compound has 
the most consistent bioavailability in multiple dosage 
tegimens. This is a valid approach, since glycosides have 
a narrow therapeutic range (15-18) and the occurrence of 
toxic manifestations in patients undergoing chronic 
therapy is 7-20% (19). Whereas p-acetyldigoxin was ex- 
tensively metabolized or degraded before reaching the 

systemic circulation (20), 0-methyldigoxin was claimed to 
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